Supported by NIH Grant Acknowledgment. GM20080. We thank Prof. F. D. Greene for helpful comments.

Supplementary Material Available: ¹H NMR spectra (CDCl₃, 200 MHz) of the CoTPP-catalyzed rearrangement of cis-3,6-dimethyl-1,2-dioxene after 45 min and 12 h at room temperature; the figure clearly displays the isomeric hemiketals and the clean quantitative formation of 2,5-dimethylfuran (1 page). Ordering information is given on any current masthead page.

A Facile Procedure for Synthesis of Capsaicin¹

Harumi Kaga, Masakatsu Miura, and Kazuhiko Orito*,†

Government Industrial Development Laboratory, Hokkaido, Sapporo 004, Japan, and Department of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

Received October 26, 1988

Capsaicin (1a), a pungent principle of capsicums, has been known to exhibit a variety of biological activities,² including recent findings concerning its mutagenicity.³⁻⁶ The family of natural capsaicinoids consists of more than 15 vanillylamides including nordihydrocapsaicins, capsaicin, dihydrocapsaicin, homocapsaicins, homodihydrocapsaicins, bishomocapsaicin, and trishomocapsaicin.⁷ Recently Gannett et al. suggested adding two capsaicinoids (nornorcapsaicin and norcapsaicin) as new members to this group.³ Several groups have reported interesting synthetic routes characterized by their own key reactions,^{3,8-12} which were developed to introduce an E double bond at the C_6 position of the side chain of capsaicin.

It has been reported that E-olefins of fatty acids^{13,14} or sex pheromones 15 are produced by the nitrous acid induced $Z \rightarrow E$ isomerization reaction of the carbon-carbon double bond.¹⁴ We were interested in testing this technique of introducing the C_6 -E double bond into the 8-methylnonenoic acid molecule. The results of our study show that by using this technique capsaicin is readily obtained in a concise route amenable to other capsaicinoids.

Phosphonium salt 2, prepared from commercially available 6-bromohexanoic acid in 88% yield, was treated with 'BuOK and isobutylaldehyde in DMF.¹⁶⁻¹⁸ The product, (Z)-8-methyl-6-nonenoic acid (3b) (74%), was found to be contaminated with the E isomer in a 1:11 E/Zratio by GLC analysis through esterification with diazomethane. Subsequent treatment of 3b with HNO_2 in HNO₃ at 70 °C for 30 min¹⁵ afforded the E isomer 3a (77%, E/Z = 8:1). No other isomer due to double bond migration was detected.¹⁴

$(CH_3)_2CHCH \longrightarrow CH(CH_2)_4COR$	Br ⁻ Ph₃P ⁺ (CH₂)₅COOH
a = <i>E</i> , <i>b</i> = <i>Z</i> double bond	2

1:
$$R = NHCH_2C_6H_3-3-OCH_3$$
, 4-OH

3: R = OH

4: R = Cl

The other end of the capsaicin molecule is a vanillylamine moiety, which had been prepared by reduction of vanillin oxime.^{3,10,19} The Leuckart reaction of vanillin using ammonium formate²⁰ could also produce pure vanillylamine hydrochloride (47.5%). The (E)-acid chloride 4a was treated with free vanilly lamine to yield the crude amide (91%, E/Z = 8:1), whose fractional crystallizations from hexane-ether furnished capsaicin (1a) (53%) in a

pure state. Similar treatment of the (Z)-acid chloride 4b led to cis-capsaicin (1b) (66%), which does not occur naturally.^{2a,21,22}

Experimental Section

Melting points were determined on a MEL-TEMP apparatus (Laboratory Devices) and are uncorrected. Boiling points are uncorrected. Infrared spectra were recorded on a FTS-65 (BIO-RAD) spectrophotometer. ¹H NMR spectra were run in CDCl₃ solution with Me₄Si as an internal standard ($\delta = 0$ ppm) and resistered on a JEOL GX-270 (270 MHz) or JEOL PS-100 (100 MHz) spectrometer. Mass spectra were obtained on a INCOS 50 (Finnigan MAT Instruments, Inc.) at 70 eV under electron impact conditions, or a JEOL JMS-D300 instrument under field ionization condition. Gas chromatography was carried out on a YANACO G180 instrument [Yanagimoto, a 30-m glass capillary column (0.28 mm in diameter) coated with Silicone OV-101; column temperature 140 °C; injector temperature 200 °C; detector temperature 200 °C; carrier gas N2; flow rate 0.51 mL/min].

(6-Carboxyhexyl)triphenylphosphonium Bromide (2). A mixture of 6-bromohexanoic acid (25.8 g, 0.13 mol) and triphenylphosphine (34.7 g, 0.13 mol) was heated to 145 °C for 4 The cooled glassy reaction mixture was triturated with dry CHCl_3 and diluted with ether. The precipitate (58.3 g, 96%), mp 200-203 °C, was recrystallized from CHCl₃ to give an analytically pure white powder 2 (53.4 g, 88%): mp 202–203 °C; IR (KBr) 3200–2600 (COOH), 1705 (C=O) cm⁻¹; ¹H NMR (270 MHz) δ 1.62–1.72 (6 H, m, C_{3,4,5}-H), 2.39 (2 H, t, J = 7.0 Hz, C₂-H), 3.58-3.70 (2 H, m, C₆-H), 7.70-7.84 (15 H, m, Ar-H); (100 MHz) δ 10.75 (1 H, br s, COOH). Anal. Calcd for $C_{24}H_{26}O_2PBr:$ C, 63.03; H, 5.73; Br, 17.47. Found: C, 62.90; H, 5.75; Br, 17.32. (Z)-8-Methyl-6-nonenoic Acid (3b). A mixture of the salt

2 (22.8 g, 50 mmol) and isobutylaldehyde (3.6 g, 59 mmol) in dry DMF (100 mL) was added to a suspension of KO^tBu (11.55 g, 102.5 mmol) in dry DMF (125 mL) under an atmosphere of N₂ at 0 °C during the course of 15 min. After vigorous stirring for 15 h at room temperature, the resulting slurry was poured into ice-water (150 mL). Precipitated triphenylphosphine oxide was removed by suction filtration. The filtrate was washed with benzene (30 mL \times 2) and acidified with 2 M HCl. The product was extracted with ether (20 mL \times 4), washed with saturated brine (15 mL \times 4), dried over anhydrous Na_2SO_4 , and subjected to short pass distillation to give the acid 3b (6.25 g, 74%): bp 109-110 °C (3 Torr) [lit.²³ bp 150-150 °C (13 Torr)]; IR (neat) 3000-2500

(1) Presented at the 47th National Meeting of the Chemical Society of Japan, March 1983, Kyoto ("Abstracts of Papers", p 1179).

- (2) For a review, see: (a) Suzuki, T.; Iwai, K. In *The Alkaloids*; Brossi, A., Ed.; Academic: Orlando, 1984; Vol. 27, pp 227-299. (b) Buck, S. H. Burks, T. F. Pharmacol. Rev. 1986, 38, 179
- (3) Gannett, P. M.; Nagel, D. L.; Reilly, P. J.; Lawson, T.; Sharpe, J.; (d) Calific I. 1. M., Ragel, D. E., Reffy T. S., Dawson, T., Sharpe, J.,
 Toth, B. J. Org. Chem. 1988, 53, 1064.
 (4) Toth, B.; Rogan, E.; Walker, B. Anticancer Res. 1984, 4, 117.
 (5) Nagabhushan, M.; Bhide, S. V. Environ. Mut. 1985, 7, 881.
 (6) Nagabhushan, M.; Bhide, S. V. Natr. Cancer 1986, 8, 201.
- (7) Some of capsaicinoids remain as they were tentatively identified, as documented well in ref 2a. (8) Späth, E.; Darling, S. F. Ber. Dtsch. Chem. Ges. 1930, 63, 737.
- (9) Takahashi, M.; Osawa, E.; Ueda, J.; Okada, K. Yakugaku Zasshi 1976, 96, 137
- (10) Crombie, L.; Dandegaonker, S. H.; Simpson, K. B. J. Chem. Soc. 1955, 1025.
- (11) Jezo, I. Chem. Zvesti 1975, 29, 714; Chem. Abstrs. 1976, 85, 32588u.
- (12) Vig, O. P.; Aggarwal, R. C.; Sharma, M. L.; Sharma, S. D. Indian J. Chem., Sect. B. 1979, 17B, 558.
 (13) Litchfield, C.; Harlow, R. D.; Isbell, A. F.; Reiser, R. J. Am. Oil Chem. Soc. 1965, 42, 73.
 (14) Chem. Soc. 1965, 42, 73.
- 14) Chang, S.; Miwa, T. K. J. Am. Oil Chem. Soc. 1972, 49, 422.
 (15) Sonnet, P. E. J. Org. Chem. 1974, 39, 3793.
 (16) Denny, D. B.; Smith, L. C. J. Org. Chem. 1962, 27, 3403.
 (17) Bergelson, L. D.; Vaver, V. A.; Kovtun, V. Y.; Senyayina, L. B.;
- Shemyakin, M. M. Zh. Obsch. Khim. 1962, 32, 1802; Chem. Abstr. 1962, 58, 4415g.
- (18) Maryanoff, B. E.; Reitz, A. B.; Duhl-Emswiler, B. A. J. Am. Chem. Soc. 1985, 107, 217

(19) Nelson, E. K. J. Am. Chem. Soc. 1919, 41, 1115.
(20) Ingersoll, A. W. Organic Syntheses; John Wiley and Sons, Inc.: New York, 1950; Collect. Vol. II, p 503.
(21) Rangoonwala, R. J. Chromatogr. 1969, 41, 265.
(22) Kosuge, S.; Furuta, M. Agr. Biol. Chem. 1970, 34, 248.

[†]Hokkaido University.

(COOH), 740 (C=C) cm⁻¹; ¹H NMR (270 MHz) δ 0.94 (6 H, d, J = 6.6 Hz, CH₃ × 2), 1.41, 1.66 (each 2 H, quint, J = 7.5 Hz, C_{3,4}-H), 2.06 (2 H, dt, J = 7.3, 7.3, 5.9 Hz, C₅-H), 2.36 (2 H, t, J = 7.5 Hz, C₂-H), 2.58 (1 H, m, C₈-H), 5.16–5.23 (2 H, m, CH=CH); (100 MHz) δ 11.50 (1 H, br s, COOH); EI-MS m/z (relative intensity) 170 (M⁺, 14), 152 (M⁺ – 18, 13), 137 (19), 109 (13), 95 (28), 81 (22), 69 (100), 55 (77), 41 (85). Anal. Calcd for C₁₀H₁₈O₂: C, 70.54; H, 10.66. Found: C, 70.44; H, 10.66. This acid was esterified with CH₂N₂, and the E/Z ratio was found to be 1:11 [E isomer (t_R 10.6 min); Z-isomer (t_R 10.3 min)] by GLC analysis.

Isomerization of the (Z)-Acid 3b. 2 M NaNO₂ (3.2 mL) and 6 M HNO₃ (2.15 mL) were added to the (Z)-acid **3b** (7.7 g, 45.3 mmol) warmed at 70–75 °C under an atmosphere of N_2 .¹⁵ The mixture was then stirred vigorously for 0.5 h. The cooled reaction mixture was diluted with ether (50 mL), washed with water (50 mL) and saturated brine (30 mL \times 3), dried over anhydrous Na₂SO₄, and evaporated. The oily residue was distilled under reduced pressure to give the (E)-acid **3a** (5.94 g, 77%): bp 117-120 °C (2.8 Torr) [lit.⁹ bp 100-103 °C (3 Torr), lit.¹⁰ bp 130-132 °C (12 Torr), lit.¹² bp 120-122 °C (5-6 Torr)]. GLC analysis revealed that E/Z ratio of 3a was 8:1: IR (neat) 3300-2500 (COOH), 1710 (C=O), 970 (C=C) cm⁻¹; ¹H NMR (270 MHz) δ 0.96 (6 H, d, J = 6.6 Hz, CH₃ × 2), 1.41, 1.64 (each 2 H, quint, J = 6.6 Hz, C_{3,4}-H), 2.00 (2 H, q, J = 6.6 Hz, C₅-H), 2.35 (2 H, t, J = 6.8 Hz, C₂-H), 2.17–2.30 (1 H, m, C₈-H), 5.32–5.38 (2 H, m, CH=CH); (100 MHz) δ 11.50 (1 H, br s, COOH); FI-MS m/z (relative intensity) 171 $(MH^+, 19.9), 170 (M^+, 100); EI-MS m/z$ (relative intensity) 170 $(M^+, 20), 152 (16), 137 (24), 109 (20), 95 (33), 81 (24), 69 (100),$ 55 (79), 41 (95). Anal. Calcd for C₁₀H₁₈O₂: C, 70.54; H, 10.66. Found: C, 70.69; H, 10.88.

Vanillylamine. A mixture of vanillin (15.2 g, 0.1 mol) and ammonium formate (20 g, 0.32 mol) was heated at 180 °C for 3 h^{20} and, after cooling, evaporated until the odor of ammonia disappeared. To the residue was added concentrated HCl (12 mL). The mixture was refluxed for 1 h and then evaporated until the odor of HCl disappeared. The HCl salt was crystallized by adding EtOH (70 mL). Two recrystallizations from 95% EtOH yielded pure vanillylamine hydrochloride (8.99 g, 47.5%), mp 216–218 °C dec (lit.³ mp 219–222 °C dec, lit.¹⁰ mp 214 °C). IR and ¹H NMR data were identical with those reported in the literature.³ Anal. Calcd for C₈H₁₂NClO₂: C, 50.67; H, 6.38; N, 7.39; Cl, 18.70. Found: C, 50.44; H, 6.40; N, 7.47; Cl, 18.90.

To a vigorously stirred solution of vanillylamine hydrochloride (3.66 g, 19.31 mmol) in water (50 mL) was added 2 M NaOH solution (9.38 mL, 18.76 mmol). The resulting white solid of free vanillylamine was collected by suction filtration, washed with water, dried over P_2O_5 in a vacuum desiccator, and amounted to 2.54 g (89%), mp 135–136 °C (lit.⁹ mp 132 °C, lit.¹⁹ mp 131–133 °C), which was used in the following steps without further purification.

(E)-N-(4-Hydroxy-3-methoxybenzyl)-8-methylnon-6-enamide (Capsaicin) (1a). The (E)-acid 3a (334 mg, 1.96 mmol) and thionyl chloride (720 mg, 5.88 mmol) were stirred at room temperature for 8 h and then heated at 100 °C for 0.5 h. The excess thionyl chloride was removed under reduced pressure. The resulting acid chloride 4a [bp 100-102 °C (12 Torr)]²⁴ was dissolved in dry ether (10 mL) and added to a stirred suspension of dry vanillylamine (600 mg, 3.92 mmol) in dry ether (25 mL) under an atmosphere of N_2 . The mixture was kept at room temperature for 2 h and then gently refluxed for 2 h. After cooling, the precipitate was removed by suction filtration, and the filtrate was evaporated. The residue was purified by column chromatography on silica gel (Fuji-gel BW-200, 15 g, elution with 2:1 hexane-ethyl acetate). The oily product (542 mg, $E/Z = 8:1,^{25}$ 91%) was treated with 2:1 hexane–ether to give a crystalline solid $(473 \text{ mg}, E/Z = 12:1,^{25} 79\%), \text{ mp } 60-63 \text{ °C}.$ Two recrystallizations from the same solvents gave capsaic in (318 mg, 53%), mp 64–65 °C (lit.^{3,8,12} mp 64-65 °C, lit.⁹ mp 63.8 °C, lit.¹⁰ mp 65 °C) as a white solid. IR, ¹H NMR, and mass spectral data were essentially identical with those reported in the literatures.^{3,9} Anal. Calcd for $C_{18}H_{27}NO_3$: C, 70.79; H, 8.91; N, 4.59. Found: C, 70.69; H, 9.02, N, 4.49.

(Z)-N-(4-Hydroxy-3-methoxybenzyl)-8-methylnon-6-enamide (cis-Capsaicin) (1b). The (Z)-acid 3b (464 mg, 2.72 mmol) was treated with thionyl chloride (1.0 g, 8.17 mmol) in the same manner as noted above. The obtained acid chloride 4b [bp 99-102 °C (13 Torr)]²⁴ in dry ether (10 mL) was added to a suspension of dry vanillylamine (835 mg, 5.45 mmol) in dry ether (30 mL) under an atmosphere of N_{2} . The workup in the same manner as noted above gave the crude oily amide 1b (745 mg, $E/Z = 1:11,^{25}90\%$), which on crystallization from 2:1 hexane-ether afforded a crystalline solid (674 mg, 81%, E/Z = 1:13).²⁵ Two recrystallizations from the same solvents afforded cis-capsaicin (1b) (548 mg, 66%), mp 68.5–69.5 °C (lit.²³ mp 70 °C), as a white solid. IR, ¹H NMR, and mass spectral data were essentially identical with those reported by Gannett et al.³ Anal. Calcd for C₁₈H₂₇NO₃: C, 70.79; H, 8.91; N, 4.59. Found: C, 70.78; H, 9.08; N. 4.61.

Nitrobenzophenone Oxime Based Resins for the Solid-Phase Synthesis of Protected Peptide Segments¹

Mark A. Findeis* and Emil Thomas Kaiser²

Laboratory of Bioorganic Chemistry and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10021

Received January 31, 1989

This laboratory has reported the development of an oxime resin that allows the rapid synthesis and isolation of protected peptides.³⁴ This oxime support has been used successfully in the synthesis of an apolipoprotein model peptide⁵ and a synthetic hemeprotein⁶ and is now being applied in the syntheses of several small proteins.^{7,8} During our efforts to synthesize peptides corresponding to partial and full sequences of our target proteins we have encountered difficulties in the use of our polystyrene-based oxime resin both in the synthesis of specific sequences of certain short peptides (<10 residues) and in the recoupling of smaller protected peptide segments on the oxime resin to assemble large peptides. Difficulties in the latter instance have necessitated the use of solution-phase couplings to couple larger protected peptides of about >15 residues. Nevertheless, we would still like to have a solid support as an effective option for use in the coupling of protected peptide segments. This paper describes our initial effort to explore alternative oxime solid-phase supports for the synthesis and assembly of protected peptides through the synthesis of a nitrobenzophenone oxime derivative and its attachment to a polyamide resin. We also report an improved procedure for the synthesis of our previously reported polystyrene-based oxime resin 1.3,4

Results and Discussion

Because the 4-nitrobenzophenone oxime (NBO) moiety has proved reliable in previous synthetic work, we decided to synthesize a molecule that would contain the NBO functionality and, in addition, a linker arm through which the oxime could be attached to a solid support. While the standard oxime resin is obtained by direct modification of polystyrene beads (Scheme I), this new approach offers

⁽²³⁾ Rangoonwala, R.; Seitz, G. Deut. Apoth.-Ztg. 1970, 110, 1946. (24) The boiling points of the acid chlorides 4a,b were determined by distillation (85–90% yields) in other runs.

⁽²⁵⁾ The E/Z ratio was determined on intensities of isopropyl signals by ¹H NMR analysis.

^{*}Author to whom correspondence should be addressed at: Arteriosclerosis Center, Department of Medicine, Deaconess Hospital, 110 Francis Street, Suite 7F, Boston, MA 02215.